
26 The Delphi Magazine Issue 72

Hackers 101
by Jason Southwell

As Delphi developers, we are
afforded a lot of luxuries that

many software developers don’t
have. We don’t have to deal too
much with cryptic APIs, most
visual work can be done via drag
and drop, and any enhancements
to basic system components can
easily be made by inheriting from a
very strong component library
that is already in the product.
While these features will improve
our productivity, sometimes they
make us sloppy programmers. By
sloppy, I mean that we get used to
Delphi doing everything for us: we
forget to pay attention to certain
details that can eventually be dev-
astating to our projects and, at
times, reputations.

Newbies to Delphi almost always
find sloppy programming causes
problems at product release time,
with excessive resource usage or
imprudent memory management.
However, even experienced devel-
opers can overlook some key
aspects to their applications. Some
of these oversights can certainly
affect application stability, but also
application security: this is the
topic I’d like to discuss in this
article.

We may be able to get away with
these mistakes. Perhaps your
application is only used in-house
with a small number of trusted
employees. Or perhaps it stores no
sensitive data and is never oper-
ated on a system with administra-
tive access. However, I think that a
great many of us should have more
concern about this issue than we
generally do.

More and more we are hearing
news reports of applications and
websites that have been found to
have security vulnerabilities. We
are also hearing more and more
about hackers taking advantage of
these vulnerabilities. In fact, few
hackers nowadays are advanced
enough to be able to find new
vulnerabilities themselves: most
exploit well known vulnerabilities

in existing applications. There are
several websites that together list
thousands of software vulnerabili-
ties that a semi-skilled hacker
could exploit. For a rude awaken-
ing sometime, do some surfing
through www.cert.org or
icat.nist.gov. These sites are great
for system administrators to find
and plug security holes in their
installed applications, but are used
everyday by hackers looking for a
way into applications.

The Mind Of A Hacker
The term hacking is generally
improperly defined to include
hacking, cracking, and attacks. In
this article, we will discuss only
true hacking and how it can affect
our applications. Cracking and
attacks will have to wait for a later
article.

Every developer and system
administrator should see the
movie Sneakers. Besides being one
of my all-time favorite movies, it is
generally regarded in the hacker
community to be one of the best
hacker movies ever. In the movie,
Robert Redford leads a group of
ex-hackers who are hired to break
into businesses to verify security
procedures. Watching this movie
will clearly define what it is to be a
hacker. Hacking is not crashing a
computer or network. It is not
about destruction, but rather the
quest for free information. That’s
it. So if that’s all that hacking is
about, the real question is: could
your applications be tools to be
used in their quest?

For those of you who develop
applications that store little or no
information of interest to a hacker,
don’t think that you are a disquali-
fied target. In fact, generally the
hacked application is only used as
a pathway to a larger source of
information. In many cases, they
will attempt to use your
application to gain access to
critical system information. This
can in turn be used to gain more

important and more valuable
information.

Common Targets
Any type of application can con-
tain vulnerabilities, but certainly
there are characteristics that
make an application a more attrac-
tive target. Some of these factors
are as follows:

User Demographic: It may seem
obvious that applications with the
highest user exposure have the
greatest potential to be encoun-
tered by a hacker. While this is
true, there are other factors that
are just as important to keep in
mind. For example, who uses your
product? A basic home user may
leave open more password vulner-
ability than someone at a corpora-
tion whose IT department has set
standards for such things. Also, it
is likely that a hacker will target a
user’s information instead of an
application’s. The application vul-
nerabilities are only exploited to
get information from or about that
user. Having unconcerned users
with access to sensitive informa-
tion could increase the target risk
of your application.

Type of Application: While any
application can be a target of hack-
ing, only those that provide a
gateway into more pertinent infor-
mation is generally worth hacking.
If your application is an NT
Service, it runs in a system pro-
cess. Hacking that application
would allow the hacker to have
access to the NT computer just as
the system process does. Hence,
services are more likely to be tar-
geted than other standard applica-
tions. Web applications are
extensions to a server that run
within the IIS service, which too
runs as a system process and, as
such, they would also be likely tar-
gets. Other than that, other appli-
cations that impersonate system
accounts or store any system
account information could also be
targeted.

Location of Application and
Code: Open source projects have
really taken the computing world
by storm. While they do have
terrific benefits, they also create a
potential security concern with

August 2001 The Delphi Magazine 27

regard to hackers. Hackers who
have your source code can scan
through the lines of code looking
for ways to exploit a compiled ver-
sion of your product. This is a
double-edged sword, however,
because although vulnerabilities
are more easily found, they can
also be more quickly patched and
therefore ultimately more secure.
The issue here is that system
administrators who use open
source software must keep an
active eye on these patches to
close the holes as they are found.
Protecting your source code from
hackers’ eyes will keep some vul-
nerabilities hidden. As they are dis-
covered, however, they are often
exploited for a much longer time
before you know that the problem
exists. Generally, open source pro-
jects, or at the very least projects
with viewable source code, tend to
be more readily targeted. In addi-
tion, if you distribute your applica-
tion it can be easier to find
vulnerabilities than if your applica-
tion exists solely on a server under
your control. Many vulnerabilities
are found via trial and error. When
an application is run locally, it is
easier to restart it when it crashes
and hence allows the hacker to
work much faster. These applica-
tions will generally be easier
to target than their server-only
counterparts.

Common Vulnerabilities
So far, you probably have some
idea of the level of threat you
should expect with your applica-
tion. Regardless of whether the
potential threat is high or low, you
should still concern yourself with
plugging potential holes. Some of
these holes exist in your code, but
many more exist in the environ-
ment in which your application is
running, or in the setup of that
environment. Holes such as these
have the most potential effect on
your web applications and are
generally the easiest for a novice or
intermediate hacker to exploit.

Sniffing
When looking toward the environ-
ment for vulnerabilities, the first
place to start is generally what’s

called ‘sniffing’ the application’s
communications. One form of sniff-
ing, coincidentally called ‘packet
sniffing’, examines the TCP/IP
packets transmitted between the
client and server portions of your
application. This method is useful
for viewing any data submitted
from web pages or the data
returned to the user on the page.
Also, it could be used to monitor a
direct database connection (or
third tier connection) between,
say, a client and its server.

Listing 1 shows the packet
sniffed while connecting to an
Interbase database with IBConsole
(Natas, the free sniffing tool used
to view this information, can be
found at http://intex.ath.cx). As
you can see from this text, we
clearly see the database local path
and username for making our own
connection to the database. The
only piece missing is the password.
There are many different methods
used for figuring out a password.
There are tools that can be found
online to perform brute force tests
or encryption de-hashing of pass-
words found in the sniffed packet.
However, it is sometimes easier to
utilize social engineering to get the
information. Social engineering is
an amazingly easy process of trick-
ing people into getting the informa-
tion you need. It is exemplified in
the whole computer-dating scene
in the aforementioned movie
Sneakers. For more information on
social engineering, there is a good
article at

www.zdnet.com/zdhelp/stories/
main/0,5594,2669953-7,00.html

Sniffing can be prevented fairly
easily. The solution, however,
varies depending upon the com-
munication protocol you are using.

If you wish to prevent people
from sniffing your HTTP web

applications, the easiest thing to
do is run it on an SSL secured
server. This is the same technol-
ogy that all secure websites use.
Due to the processing require-
ments of an SSL encrypted connec-
tion, you generally would only use
it for pages that pass sensitive data
to and from the user, lest you sacri-
fice some degree of scalability of
the application.

If you use straight TCP/IP sock-
ets to communicate instead of
HTTP, you have a couple of
options. If your application is run
in a fairly closed environment with
only a few installations, and cost is
not a factor, a very secure alterna-
tive is set up a virtual private net-
work (VPN) between all of your
users. This, of course, is not practi-
cal in an application geared toward
the general populace, and greatly
decreases some of the basic
advantages that the net brings to
you. In that case, you can use one
of the many encryption algorithms
available to encode your commu-
nication. There are many Delphi
components out there to help with
that. As encryption is not really the
focus of this article, a simple
search at www.vclcrawler.com
with the word encryption will yield
almost 100 results and give you a
good starting point.

Impersonation
Web applications are more vulner-
able in this area due to their state-
less nature. Unless you want your
users to re-enter logon informa-
tion for every page they browse,
state must be passed in every call
to the server. These applications
have no way of knowing that a user
has finished with the website.
Usually a web developer will pro-
gram a timeout into the applica-
tion to automatically log the user

19:16:09 - 07.06.2001 Protocol: TCP Service: unknown
Source Address: 24.30.157.68 Destination Address: 204.210.46.227
Source Port: 3371 Destination Port: 3050
45 00 00 84 0d ca 40 00 80 06 3b 92 18 1e 9d 44 cc d2 E @ ; D
2e e3 0d 2b 0b ea aa ae 9c c9 bb 07 80 86 50 18 44 60 . + P D`
69 c3 00 00 00 00 00 13 00 00 00 00 00 00 00 2c 63 3a i ,c:
5c 70 72 6f 67 72 61 6d 20 66 69 6c 65 73 5c 66 69 72 \program files\fir
65 62 69 72 64 5c 62 69 6e 5c 61 72 63 61 6e 61 73 69 ebird\bin\arcanasi
74 65 2e 67 64 62 00 00 00 20 01 1c 06 53 59 53 44 42 te.gdb SYSDB
41 3c 00 1e 0b 51 50 33 4c 4d 5a 2f 4d 4a 68 2e 3a 04 A< QP3LMZ/MJh.:
3c 00 00 00 3e 00 < >
--

➤ Listing 1

28 The Delphi Magazine Issue 72

off when the page hasn’t been hit
after some suitable time interval.
While this takes care of the prob-
lem to some extent, there is that
brief period of time where a hacker
could take control of the user’s ses-
sion to access the site. Also, hack-
ers that have direct access (or
obtain such access) to a user’s
computer can sit down and press
the Backbutton to see the pages the
user had just seen.

So what can be done in addition
to the timeout to help solve this
problem? One easy fix that can
have some benefit is to add an expi-
ration tag in the header of each of
your web pages (see Listing 2).
This will prevent someone from sit-
ting at the computer of a user who
had just accessed a sensitive web
application and using the Back
button to view cached pages.
When Back is pressed, the browser
will attempt to refresh the data and
the page will be resubmitted. Ses-
sions that have been timed out will
require a re-login at this point. This
unfortunately does not solve the
problem completely, but rather
makes it just a bit more difficult for
a would-be hacker. Other solutions
are much more complex and, in
some cases, not adequate either.
For example, you could hide a Java
applet in your page that repeatedly
contacts a server to report the
open browser. This would guaran-
tee that if the browser is closed, or
if the user switches websites, the
session would be closed. A method
like this does not solve the prob-
lem of a browser window left open
by a user who went to lunch, but
your timeout would eventually
take care of that. Also, it would
require additional server power to
manage the Java pings. To the best
of my knowledge, there is not a per-
fect solution to this when using
HTML as the client interface. If you
have suggestions, please feel free
to send me an email.

Overruns
Now down to the vulnerability that
has the potential to cause the most
damage. Buffer overruns have
been getting a lot of attention lately
as more and more applications are
found to have major vulnerabili-
ties. A buffer overrun found in your
software could allow a hacker to
execute code giving him adminis-
trative control of your software or,
worse, control of the computer
your software is running on. The
worst part is that this vulnerability
is not limited only to web applica-
tions. NT services, web applica-
tions, or any generic application
that runs in a system or administra-
tor context, could have huge holes
ready to be exploited.

Let’s look into what happens
with a buffer overrun. When a pro-
gram allocates a chunk of memory
of a specific size and subsequently
stuffs too much data into it, a buffer
overrun has occurred. The extra
data placed into the buffer inadver-
tently (or intentionally as we’ll see
in a bit) overwrites some informa-
tion critical to normal program
execution. This will most likely
manifest itself as an access viola-
tion or page fault in the program.
Maybe you’ve seen one of those
before.

Listing 3 shows some example
code expecting user input. When
you execute the code a dialog box

pops up prompting the user for
input. If the user enters a response
less than 15 characters, all is well.
However, if the user answers with
a string greater than 15 characters,
the application has not prepared
for it and a buffer overrun will
occur. Depending upon what data
has been overwritten in memory, it
may or may not cause an access
violation. Just for a test, enter a
string with 100 A characters in it.
You will see an access violation
that looks similar to Figure 1.

In machine code there is a spe-
cial register called EIP. This stands
for the Extended Instruction
Pointer. This pointer is what
directs the processor to the cor-
rect line in which to process next.
Placing enough As in that string
will eventually overwrite that EIP.
In the message shown in Figure 1,
you will see the address $41414139.
Interestingly enough, #41 is the
ordinal value of A. What we have
done with our buffer overrun is
told the EIP that the next instruc-
tion to execute will be found at the
memory address $41414139, or
rather the memory address AAAA9.

This is key to being able to
exploit a buffer overrun. If the EIP
can be overwritten, then the intelli-
gent hacker can overwrite it with
an address that he is familiar with.
In fact, if he could only place code
at that memory address to be
executed, then he would be in
control.

Well, in fact, he can. Listing 4
shows some assembly code. This
code when executed will simply
open up the command prompt.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<META HTTP-EQUIV="expires" CONTENT="0">
<html>
<head>
<title>This is the Page Title</title>

</head>
<body>
This Page Expires Now!
</body>
</html>

➤ Figure 1

➤ Above: Listing 2 ➤ Below: Listing 3

var
Buf1 : array[0..15] of Char;
pc : PChar;
s : string;

begin
pc := @Buf1;
InputQuery('Buffer Overrun Test','Enter some data here',s);
StrPCopy(pc,s);
Showmessage(Buf1);

end;

30 The Delphi Magazine Issue 72

That doesn’t sound too interesting
until we learn that the command
prompt is opened up in the secu-
rity context of the application that
calls the code. Therefore, if there
were only some way to place this
code into an already running ser-
vice or web application, we could
have system-level access to the
computer.

Well, guess what: we can. Listing
4 shows the assembler code in the
process of being debugged using
Delphi’s CPU window. The high-
lighted numbers show what are
known as machine op-codes.
These op-codes are what are actu-
ally being processed by the CPU
and stored at the address pointed
by the EIP. In our case, we need to
place these op-codes into the
string we pass in our buffer over-
run exploit. All that is needed now
is to pad the string with enough
characters to push the pointer of
string’s starting position out to the
appropriate memory address for
overwriting the EIP. This will then
execute our assembler code and
open the command prompt in the
same security context as the
hacked application.

There is actually a lot more
to understand about exploiting
overruns before you can be a
fully-fledged hacker, but that is the
basics of the process they go
through to do it.

And now for the good news...
Delphi applications are generally
not too vulnerable to buffer over-
run hacks. There are two simple
reasons.

First, overruns happen when a
variable that was expecting a value
of a certain size is filled with a value
of a larger size. Usually, in the pro-
cess of writing a Delphi applica-
tion, we use String variables to
house this type of information.
Strings are dynamic in size and
Delphi manages that size for us.
This means that if the value is
expected to have 16 characters but
100 are submitted, then there is
really no problem because Delphi
automatically makes the adjust-
ment to our variable for us.

Secondly, there are basically
two places that can be used to
store information for a running
application: the stack and the
heap. Overruns can be performed
on both, but with stack overruns it
is much easier to overwrite the EIP
and hence run code of your choice.
In Delphi as in other languages,

local variables are stored on the
stack and all other variables on the
heap. However, in Delphi, dynamic
variables are always stored in the
heap with local dynamic variables
referenced in the stack as a pointer
to the heap. This means that to vio-
late the stack, the variable would
have to be one of just a few types,
primarily a static array.

The safest bet in a Delphi appli-
cation is to use String variables
instead of PChars or arrays of chars.
While it is true that PChars would
be placed on the heap instead of
the stack, they still can be
exploited. Heap overruns are very
similar to stack overruns; how-
ever, finding a function pointer to
overwrite is somewhat harder. To
be completely safe, don’t use
PChars or other dynamic memory
variables unless absolutely neces-
sary.

Obviously, there are times when
you must use PChars or dynamic
arrays in your applications. In fact,
many DLLs or other APIs that you
might integrate with will use
PChars to transfer string data in the
procedure calls. These variables
can still safely be used if you use
careful consideration when assign-
ing their value. Be sure to check
the length of all values being
placed into the variable. If they are
too long, truncate or abort the
operation.

➤ Figure 2

asm
mov esp,ebp
push ebp
mov ebp, esp
xor edi, edi
push edi
sub esp, 04h
mov byte ptr [ebp-08h],63h
mov byte ptr [ebp-07h],6Dh
mov byte ptr [ebp-06h],64h
mov byte ptr [ebp-05h],2Eh
mov byte ptr [ebp-04h],65h
mov byte ptr [ebp-03h],78h
mov byte ptr [ebp-02h],65h
mov eax, $78019B4A // Set this to the correct offset for the
// System() function in your msvcrt.dll version

push eax
lea eax, [ebp-08h]
push eax
call dword ptr [ebp-0ch]
mov eax,[ebp-$08]
push eax
call FreeLibrary

end;

➤ Listing 4

August 2001 The Delphi Magazine 31

This is somewhat difficult if you are calling out to
another DLL. You probably have no idea what length to
limit the PChar you will pass to it. If the developers of
the DLL did their job, they will check this themselves
for you; however, you cannot be guaranteed that this is
the case. A good precaution is to search one of the
many vulnerability databases online, especially if the
API or DLL is rather well known or widely used. These
databases keep fairly up to date and, as vulnerabilities
are found, they are quickly documented.

These overrun concepts aren’t easy to get on the
first try and a true grasp on the subject would most cer-
tainly require more study. For more information about
buffer overruns, you might want to check the Tao Of
Windows Buffer Overflow at www.cultdeadcow.com/
cDc_files/cDc-351/.

Keep Informed
As I’m writing this I’m sure there is some hacker out
there coming up with some cool new way to manipu-
late your code. As developers, we will be forever work-
ing to catch up with the hackers: after all, by definition,
they are trying to learn about our programs and the
information contained within them. We will try to
patch their exploits and they will try to exploit those
fixes. It’s a vicious circle that simply ends with the con-
clusion that there will never be a 100% security
guarantee. If you do decide to advertise such a
guarantee, than be prepared that hackers everywhere
will target you. They love a good challenge.

The best thing that we as developers can do is to
keep ourselves informed about the latest hacking tech-
niques. Even if we ourselves never intend to hack into
some government database or break into the Federal
Reserve, we should have some idea of the techniques
used to do it. Only through this knowledge will we be
able to be proactive at securing our own applications
from this type of breach.

There are several good resources that you should be
aware of to help you stay informed. First of all, every-
one should sign up to receive 2600 The Hacker Quar-
terly (www.2600.com). This magazine is put out by 2600
(a worldwide hacker organization) and is created
together by hackers of all ages and skill levels. Reading
it will really get you tuned into how hackers think:
remember that understanding is key to defending.

Vulnerabilities are everywhere and with the hacking
mindset being what it is, there will continue to be more
discovered for a very long time. To end on a quote from
that great movie Sneakers that sums up the hacker
mindset: ‘Too many secrets’.

Jason Southwell is President and CEO of Arcana Tech-
nologies Incorporated. He has over 10 years experi-
ence managing, designing and developing internet
technology and computer software and has been
directly responsible for several ERP and internet B2B
projects. He has been a Delphi developer since Delphi
1.0 way back in 1995. You can contact him at
jason@southwell.net

	The Mind Of A Hacker
	Common Targets
	Common Vulnerabilities
	Sniffing
	Impersonation
	Overruns
	Keep Informed

